

# INDIAN SCHOOL AL WADI AL KABIR



| Class: XII              | Department: SCIENCE 2023-24<br>CHEMISTRY | Date: 15/11/2023     |
|-------------------------|------------------------------------------|----------------------|
| Worksheet No.: 9        | <b>Topic:</b> d- and f- Block Elements   | Note: A4 FILE FORMAT |
| NAME OF THE<br>STUDENT: | CLASS & SEC:                             | ROLL NO.             |

### I. <u>MULTIPLE CHOICE QUESTIONS (1 MARK)</u>

1. Which of the following is the most common oxidation state of copper?

- (a) +1
- (b) +2

(c) + 3

(d) +4

2. Which of the following would be paramagnetic?

(a)  $Zn^{2+}$ 

(b)  $Cu^+$ 

(c)  $Sc^{3+}$ 

(d)  $Mn^{2+}$ 

3. Which of the following is a d-block element that does not form coloured compounds?

- (a) Zinc
- (b) Chromium
- (c) Cobalt
- (d) Nickel

4. Which of the following is a catalyst used in the Haber process?

- (a) Iron
- (b) Nickel
- (c) Platinum
- (d) All of the above

5. Which of the following is a characteristic of lanthanide contraction?

(a) The atomic radius of the lanthanides decreases gradually.

(b) The ionic radius of the lanthanides decreases gradually.

(c) The ionization energy of the lanthanides increases gradually.

(d) All of the above

6. When manganese dioxide is fused with KOH in air. It gives

- (a) potassium permanganate (b) potassium manganate
- (c) manganese hydroxide (d)  $Mn_3O_4$ .

- 7. Which metal has highest melting point?
- (a) Pt
- (b) W
- (c) Pd
- (d) Au.

## II. ASSERTION REASON TYPE OUESTIONS (I MARK)

For the following questions, two statements are given- one labelled *Assertion* (A) and theother labelled *Reason* (R). Select the correct answer to these questions from the codes (i),(ii), (iii) and (iv) as given below

- (a) Both A and R are true and R is the correct explanation of the assertion.
- (b) Both A and R are true but R is not the correct explanation of the assertion.
- (c) A is true but R is false.
- (d) A is false but R is true.
- Assertion: Transition metals show variable valency.
   Reason: Transition metals have a large energy difference between the ns<sup>2</sup> and (n–1)d electrons.
- 9. Assertion: Cuprous ion (Cu+) is colourless whereas cupric ion (Cu++) is blue in the aqueous solution.

Reason: Cuprous ion (Cu+) has unpaired electrons while cupric ion (Cu++) does not.

10.. Assertion: Transition metals are good catalysts.

Reason:  $V_2O_5$  is used in the preparation of  $H_2SO_4$  by contact process.

### III. <u>2 MARKS QUESTIONS</u>

- 11 Explain the following observations:
  - (i) Transition elements generally form coloured compounds.
  - (ii) Zinc is not regarded as a transition element.
- 12. Assign reasons for the following:
  - (i) Copper (I) ion is not known in aqueous solution.
  - (ii) Actinoids exhibit greater range of oxidation states than lanthanoids.
- 13. How would you account for the following:

(i)  $Cr^{2+}$  is reducing in nature while with the same d-orbital configuration (d<sup>4</sup>)  $Mn^{3+}$  is an oxidising agent.

(ii) In a transition series of metals, the metal which exhibits the greatest number of oxidation states occur in the middle of the series.

# 1V <u>3 MARKS QUESTIONS</u>

- 14. What is meant by 'lanthanoid contraction'?
- 15. Why do transition elements show variable oxidation states?

- 16. How would you account for the following:
- (i) Many of the transition elements and their compounds can act as good catalysts.
- (ii) The metallic radii of the third (5d) series of transition elements are virtually the same as those of the corresponding members of the second series.
- (iii) There is a greater range of oxidation states among the actinoids than among the lanthanoids.

### V 5 MARKS OUESTIONS

- 17. Explain the following observations:
  - (i) Generally, there is an increase in density of elements from titanium (Z = 22) to copper (Z = 29) in the first series of transition elements.
  - (ii) Transition elements and their compounds are generally found to be good catalysts in chemical reactions
- 18. Explain the following observations:
  - (i) Transition elements generally form coloured compounds.
  - (ii) Zinc is not regarded as a transition element
- 19 Complete the following chemical reaction equations:

(i)  $\operatorname{Mn} O_4^-(aq) + C_2 O_4^{2-}(aq) + H^+(aq) \longrightarrow$ (ii)  $\operatorname{Cr}_2 \operatorname{O}_7^{2-}(\operatorname{aq}) + \operatorname{Fe}^{2+}(\operatorname{aq}) + \operatorname{H}^+(\operatorname{aq}) \longrightarrow$ 

#### VI PASSAGE BASED /CASE STUDY BASED QUESTIONS

20. A student was asked to prepare a solution of potassium permanganate (KMnO4) in water and then titrate it against a solution of ferrous ammonium sulphate (FAS). The student observed that the colour of the solution changed from purple to colourless.

Answer the following questions based on this information:

- a. Write the balanced chemical equation for the reaction that took place.
- b. What is the oxidation state of manganese in KMnO<sub>4</sub>?
- c. What is the oxidation state of iron in FAS.

21. A student was given a sample of a compound that contained a transition metal. The student performed several tests on the compound and obtained the following observations:

- 1. The compound is blue in color.
- 2. The compound is soluble in water.
- 3. The compound reacts with sodium hydroxide to form a blue precipitate.
- 4. The compound reacts with hydrochloric acid to form a green solution.

Answer the following questions based on this information:

- a. What is the transition metal present in the compound?
- b. What is the oxidation state of the transition metal in the compound?
- c. Why is this transition metal stable in the Oxidation state present in this compound?

| Q.<br>No. | ANSWERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1.        | (b) +2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 2.        | (d) $Mn^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 3.        | (a) Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 4.        | (a) Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 5.        | (d) All of the above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 6.        | (b) potassium manganate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 7.        | (b) W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 8.        | (c) A is true but R is false.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 9.        | (c)A is true but R is false                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 10        | (b) Both A and R are true but R is not the correct explanation of the assertion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 11        | (i) Transition elements have vacant d orbitals. So, due to the presence of vacant d-orbital, they produce coloured compound. When visible light strikes a transition metal complex or ion, the unpaired electrons in the lower energy d-orbitals are promoted to higher energy d-orbitals, a process is known as the d-d transition. Since the energy involved in the d-d transition is quantized, only a specific wavelength is absorbed, while the rest of the visible spectrum is transmitted. As a result, transmitted light has a complementary colour to the absorbed colour.                                                                    |  |  |
|           | (ii) As zinc atom has completely filled d orbitals in its ground state as well as oxidised state, therefore, it is not regarded as transition element.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 12.       | <ul> <li>(i) In an aqueous medium, Cu<sup>2+</sup> is more stable than Cu<sup>+</sup>. This is because energy is required to remove one electron from Cu<sup>+</sup> to Cu<sup>2+</sup>, high hydration energy of Cu<sup>2+</sup> compensates for it. Therefore, Cu<sup>+</sup> ion in an aqueous solution is unstable. It disproportionate to give Cu<sup>2+</sup> and Cu.</li> <li>(ii) Actinides exhibit larger oxidation states than lanthanides, because of the very small energy gap between 5f, 6d and 7s subshells. Thus, the outermost electrons get easily excited to the higher energy levels, giving variable oxidation states.</li> </ul> |  |  |
| 13        | <ul> <li>(i) Cr<sup>2+</sup> is reducing as its configuration changes from d4 to d3 a more stable half-filled t2g configuration while Mn<sup>3+</sup> is oxidising as Mn<sup>3+</sup> to Mn<sup>2+</sup> results a more stable half-filled d5 configuration</li> <li>(ii) In the middle of the series (d5 configuration) there is a participation of two ns electrons and (n-1)d electrons in the bond formation. Therefore, the elements in the middle of the transition series exhibit maximum oxidation state. (e.g., Mn present in 3d series.</li> </ul>                                                                                           |  |  |
| 14        | Lanthanide contraction is the gradual decrease in the atomic and ionic size of lanthanoids with an increase in atomic number. With an increase in the atomic number, the positive charge on nucleus increases by one unit and one more electron enters same 4f subshell. The electrons in 4f subshell imperfectly shield each other. Shielding in a 4f subshell is lesser than in d subshell. With the increase in nuclear charge, the valence shell is pulled slightly towards the nucleus. This causes                                                                                                                                               |  |  |

|    | lanthanide contraction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                       |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|
| 15 | The d block elements show variable oxidation state because transition metals have (n-1)d orbitals empty that are closer to the outermost ns orbital in energy levels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                       |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                       |  |
| 16 | <ul> <li>(i) Transition elements are capable of exhibiting different oxidation states.</li> <li>(ii) The atomic radii of the metals of the third series of transition elements are vasame as those of the corresponding members of the second series due to the second</li></ul> |                                                                                                       |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                       |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                       |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | orbitals which have poor shielding effect (lanthanide contraction).                                   |  |
|    | (iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Actinides exhibit larger oxidation states than lanthanides, because of the very small                 |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | energy gap between 5f, 6d and 7s subshells. Thus, the outermost electrons get easily                  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | excited to the higher energy levels, giving variable oxidation states.                                |  |
| 17 | (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | This is due to decrease in metallic radius coupled with increase in atomic mass results               |  |
|    | <i>(</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | in a general increase in the density.                                                                 |  |
|    | (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | This property is due to their ability to exhibit variable oxidation states (incomplete d-             |  |
| 18 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | orbitals) which enable them to form unstable intermediates.                                           |  |
| 10 | (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | When visible light strikes a transition metal complex or ion, the unpaired electrons in the lower     |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | energy d-orbitals are promoted to higher energy d-orbitals, a process is known as the d-d             |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | transition. Since the energy involved in the d-d transition is quantized, only a specific             |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                       |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | wavelength is absorbed, while the rest of the visible spectrum is transmitted. As a result,           |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | transmitted light has a complementary colour to the absorbed colour.                                  |  |
|    | (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | As zinc atom has completely filled -orbitals in its ground state as well as oxidised state,           |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | therefore, it is not regarded as transition element.                                                  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                       |  |
| 19 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$                               |  |
|    | (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $214110_4 + 50_20_4 + 1011 \rightarrow 21411 + 1000_2 + 311_20$                                       |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C \Gamma = 2^{+}$ , $C = 0^{2^{-}}$ , $1.411^{+}$ , $C \Gamma = 2^{+3}$ , $2 C = 2^{+3}$ , $711^{-}$ |  |
|    | (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ = 6Fe^{+3} + 2Cr^{+3} + 7H_2O$                                       |  |
| 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                       |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                       |  |
|    | (b) +7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                       |  |
|    | (c) +2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                       |  |
| 21 | (a) Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                       |  |
|    | (b) +2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                       |  |
|    | (c) Hydration energy of Cu <sup>2+</sup> is high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |  |

| PREPARED BY       | CHECKED BY  |
|-------------------|-------------|
| Ms JENESHA JOSEPH | HoD SCIENCE |